Persistent and invariant formulas relative to theories of higher order
نویسندگان
چکیده
منابع مشابه
Persistent and Invariant Formulas Relative to Theories of Higher Order
The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited. Manuscripts more than eight typewritten double spaced pages long will no...
متن کاملSpecial phase invariant formulas of higher order: Expected values.
Formulas for the cosines of the higher-order phase invariants that arise in crystal structure analysis are derived as expected values from determinantal joint probability distributions. The values of the cosines of the invariants are expressed in terms of averages over simple functions of known structure factor magnitudes. The formulas are termed "special" to distinguish them from formulas that...
متن کاملPersistent and invariant formulas for outer extensions
© Foundation Compositio Mathematica, 1968, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http:// http://www.compositio.nl/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier ...
متن کاملRelative Predicativity and dependent Recursion in second-order Set Theory and Higher-order Theories
This article reports that some robustness of the notions of predicativity and of autonomous progression is broken down if as the given infinite total entity we choose some mathematical entities other than the traditional ω. Namely, the equivalence between normal transfinite recursion scheme and new dependent transfinite recursion scheme, which does hold in the context of subsystems of second or...
متن کاملHigher-order theories
We extend our approach to abstract syntax (with binding constructions) through modules and linearity. First we give a new general definition of arity, yielding the companion notion of signature. Then we obtain a modularity result as requested by [GU03]: in our setting, merging two extensions of syntax corresponds to building an amalgamated sum. Finally we define a natural notion of equation con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1966
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1966-11507-0